
Fantastic (small) Retrievers and How to Train
Them: mxbai-edge-colbert-v0 Tech Report

Rikiya Takehi1,2*, Benjamin Clavié1, Sean Lee1, and Aamir Shakir1

1 Mixedbread AI
2 Waseda University

{rikiya,ben,sean}@mixedbread.com

Abstract. In this work, we introduce mxbai-edge-colbert-v0 models,
at two different parameter counts: 17M and 32M. As part of our re-
search, we conduct numerous experiments to improve retrieval and late-
interaction models, which we intend to distill into smaller models as
proof-of-concepts. Our ultimate aim is to support retrieval at all scales,
from large-scale retrieval which lives in the cloud to models that can run
locally, on any device. mxbai-edge-colbert-v0 is a model that we hope will
serve as a solid foundation backbone for all future experiments, represent-
ing the first version of a long series of small proof-of-concepts. As part of
the development of mxbai-edge-colbert-v0, we conducted multiple abla-
tion studies, of which we report the results. In terms of downstream per-
formance, mxbai-edge-colbert-v0 is a particularly capable small model,
outperforming ColBERTv2 on common short-text benchmarks (BEIR)
and representing a large step forward in long-context tasks, with un-
precedented efficiency.

1 Introduction

In the last two years, neural Information Retrieval (IR) has experienced an
unprecedented level of interest, owing in large part to the rapid development
and deployment of Large Language Models (LLMs) and the proven effectiveness
of Retrieval Augmented Generation (RAG) pipelines [13], where retrieval models
are used to provide LLMs with useful context.

As part of this wave, end-user interest in multi-vector retrieval methods, also
called late interaction models or, more simply, ColBERT, after the model which
initially introduced this method [11]. Where the dominant paradigm in neural
IR, Dense Passage Retrieval (DPR) [36], leverages a single, large vector to rep-
resent documents, ColBERT models instead employ numerous smaller vectors,
with each individual token representation projected to a small dimension then
retained. In order to make this tractable, ColBERT models are frequently used
with aggressive index quantization [25,24] or as second-stage rankers in a larger
pipeline.

The growing popularity of multi-vector models can be explained by their
retrieval performance. ColBERT models have been noted for their particularly
⋆ Work performed during an internship at Mixedbread.



2 R. Takehi et al.

robust out-of-domain performance [25], especially in multi-modal settings [27].
They have also recently been demonstrated to provably alleviate certain limi-
tations of single-vector retrieval approaches, with a 150M parameter ColBERT
models vastly outperforming 8B parameter single-vector embeddings on bench-
marks designed to test the limits of embedding models [34].

In spite of these strong performances, the ecosystem for open ColBERT mod-
els have moved more slowly than that of single-vector models. Up until last year,
the most widely used ColBERT model was ColBERTv2, originally released in
2021. Subsequently, answerai-colbert-small-v11 demonstrated a 33 million pa-
rameter ColBERT model could outperform all existing small retrievers, and
reached performance exceeding even that of ColBERTv2 and most <500M pa-
rameter retrievers.

Fig. 1. An overview of the full training process

However, there has, until very recently, been a lack of late-interaction mod-
els featuring modern features, such as long context handling due to backbone
limitations, at least in the text modality. Indeed, both ColBERTv2 and answerai-
colbert were built on top of BERT variants, namely the original BERT [6] and
MiniLM [32], with short context limits and poor efficiency, especially across
longer contexts.

ModernBERT [33] spearheaded a new wave of novel encoders, built with
efficiency in mind and allowing long-context encoders. Following its original re-
lease, it has been followed by Ettin, a reproduction of it across model sizes, and
ModernVBERT, which combines Ettin with a vision-encoder, bringing the archi-
tectural improvements to multi-modality. GTE-ModernColBERT2 [1] was subse-
quently released, leveraging ModernBERT as a backbone, and creating the new
1 https://huggingface.co/answerdotai/answerai-colbert-small-v1
2 lightonai/GTE-ModernColBERT-v1

https://huggingface.co/answerdotai/answerai-colbert-small-v1
lightonai/GTE-ModernColBERT-v1


Mxbai-edge-ColBERTv0 3

de-facto standard for 130M+ parameter ColBERT, outperforming ColBERTv2
and all dense retrievers in its parameter class.

A large gap, however, remains: while GTE-ModernColBERT is a strong, “full-
sized” model, answerai-colbert-small-v1 remains, by far, the most downloaded
ColBERT model, in spite of its architectural limitations. In our own exploratory
work at Mixedbread, we found ourselves frequently using it, as its small size and
strong performance provided a strong testbed for various experiments. We firmly
believe that performance at both ends of the scale spectrum is very important,
especially as small models are strong predictor of the performance impact of
model modifications.

As such, we decided to address this gap, and create the mxbai-edge-colbert-
v0 family of ColBERT models. These models come in two different sizes, with
17 and 32 million parameters, and have been created to serve as a strong base-
line to support further experiments while addressing the needs of users seeking
a modern, low parameter-count ColBERT. To train these models, we first cre-
ated dense embedding baselines through a series of three training stages, before
running numerous ablations resulting in the released models.

The resulting models are strong performers across the board, with consider-
ably improved efficiency over previous models. Notably, mxbai-edge-colbert-v0-
17m outperforms ColBERTv2 despite an embedding dimension of 64, half of the
commonly used 128, and an extremely low compute and memory footprint. Its
strong performance, combined with long-context handling and very low latencies,
make it particularly suitable for re-ranking applications on-device.

These models, the first of an hopefully long series of efficient edge models,
represent a solid foundation for further studies onto the effectiveness of ColBERT
model. We hope that they will support research, both within and outside of
Mixedbread, while supporting a large range of real-world uses.

2 Creating a Suitable Dense Base Model

Previous work has demonstrated the importance of beginning ColBERT train-
ings from a suitably “warmed-up” model, with considerably better results ob-
tained when training from a dense embedding model rather than initializing
training from scratch [4,1], outperforming even those obtained by further train-
ing an existing ColBERT model [3,25]. We believe this effect to be due to the fact
that dense embedding models now routinely undergo a long, distantly-supervised
contrastive alignment training phase [31] before being fine-tuned on high quality
data, which is not commonly done for ColBERT models3.

In light of this, we first set out to create a suitable dense backbone, at our
target model sizes: 32 and 17 million parameters. We use the Ettin [35] encoder

3 As the aim of this work is to create a suitable backbone to identify the effect of
individual modifications, we leave the exploration of a ColBERT-specific contrastive
warm-up phase to future work, but believe it holds strong potential for further
improvements.



4 R. Takehi et al.

models as starting models, which are a replication of the ModernBERT training
recipe across various model sizes [33].

2.1 Contrastive Pre-Training

We follow the standardised recipe for our contrastive pre-training phase, as is
now commonly adopted by the large majority of embedding models [31,19,16].
Effectively, this phase consists in leveraging many open datasets during which
we have approximate queries that can be mapped to documents that are at least
somewhat semantically related to them. In practice, this takes many different
forms: forum posts with their title acting as a query, QA pairs extracted from
common websites, etc. This training is done with a large batch size, facilitated
by GradCache [9], and resulting in a better embedding alignment.

For this section, we used the contrastor training framework, which was used
in the training of the Nomic embeddings models [21]. We used a common selec-
tion of pre-training datasets, presented in Table 2.1. We follow the work done
on mxbai-embedding-large [12] and train sequentially, that is, one dataset at
a time, rather than all at once, which we empirically found to result in better
performance. A similar form of this effect was described in the snowflake-arctic
embeddings tech report [19], where stratification of training examples by origin
dataset yielded superior results.

Table 1. Datasets used for contrastive pretraining.

Dataset Size (rows)
synthetic datasets 2.65M
nomic-embed-unsupervised-data4 172.8M
bge-m3-data 1.57M
cornstack (subsampled, 8% total) 20M
Total 197M

Interestingly, this pre-training phase highlighted an effect that appears com-
mon to all the ModernBERT and Ettin models: a higher learning rate is needed
to reach satisfying results when compared to previous backbone encoder models.
This effect was first described in the ModernBERT paper, where hyperparam-
eter sweeps revealed that a considerably higher learning rate was necessary for
ModernBERT to outperform previous encoders on common retrieval tasks [33].
Table 2 shows the NanoBEIR NDCG@10 of multiple training runs with different
learning rates.

2.2 Fine-tuning

Subsequently, we move on to the next step of dense embedding pre-training:
supervised fine-tuning on higher quality data, with mined hard negatives [37].
The mining of hard negatives is a key factor in training embedding models, as



Mxbai-edge-ColBERTv0 5

Table 2. Performance of two models post-contrastive training with varying learning
rates (NDCG@10 on NanoBEIR)

Model Learning Rate Batch Size NDCG@10
17M 3.5e-04 24576 0.493
17M 6.0e-04 24576 0.523
32M 2.8e-04 12288 0.543
32M 5.0e-04 12288 0.559

it helps provide stronger “counter-examples”: for every example that is relevant
to the query, we also provide the models with examples that are not. When
using solely random negatives, this task becomes trivial: a completely unrelated
negative will rapidly only reach very low similarity scores, and stop meaningfully
contributing to learning. This also dulls the learning process of what a “match”
looks like: if the negative examples are always completely unrelated, then the
model does not have to work as hard to learn what makes a document truly
relevant. Hard negative mining attempts to solve this problem by gathering a
set of harder negatives that look more similar to the positive document.

This ensures that the model learns to accurately represent details that differ-
entiate relatively similar documents, rather than just general topics. On the other
hand, negatives that are too hard can also be harmful to the learning process:
if the model only ever sees negative examples that are “almost-positives”, then
it might fail to learn good high-level representations. Moreover, negatives that
are too hard carry a high false-negative rate: most datasets commonly used for
retrieval have sparse labels, and it is highly likely that a lot of the highest-scoring
negative documents could actually be positives.

As such, crafting a good mix of negatives is important. We follow NV-
Embedv2 [26] in our mining process, where we used Qwen3-Embedding-8B to
mine hard negatives and set the threshold to 0.95. To learn on various nega-
tive hardness, we also mixed the data with 35% of BM-25 mined and 30% of
randomly mined documents. We mine negative for the de-facto standard set
of training datasets for retrieval fine-tuning: MSMARCO, NQ, HotPotQA and
PubMed.

Table 3. Performance comparison of Mxbai Edge models (Dense) with and without
finetuning (NDCG@10).

Model NDCG@10
Mxbai Edge 17M (Dense, non-FT) 0.523
Mxbai Edge 17M (Dense, FT) 0.556
Mxbai Edge 32M (Dense, non-FT) 0.559
Mxbai Edge 32M (Dense, FT) 0.576



6 R. Takehi et al.

We adopt the AnglE training loss [15] for this fine-tuning step, using the
AnglE codebase5. We train on a selection of common datasets, once again seeking
to follow standard practices while avoiding over-contamination in relation to
frequent benchmarks.

2.3 “Stella-style” Distillation

Finally, we add a third stage to our model pre-training, which is inspired by
the Stella [38] model family. Stella, in addition to more commonplace retrieval
training, introduces embedding space distillation: it generates embeddings
for queries and documents using a strong teacher, such as LLM-based embedding
models, and designs a teaching process in which various distance-based losses
are used to minimise the distance between the embeddings produced by the
student model and its teachers. The resulting models, the Stella and Jasper
embedding families, are extremely strong embedding models at their respective
sizes, and have been frequently demonstrated to reach very strong out-of-domain
performance [17].

As part of our training, we initially employed the partial codebase released
by the Stella authors6, but found the full multi-step process difficult produce,
yielding poorly performing models, with fluctuating performance and extremely
high sensitivity to hyperparameters. Following work such as LEAF [30], we opted
to simplify the distillation loss to a simple L2 loss:

L2(yi, ŷi) =

d∑
j=1

(yij − ŷij)
2 (1)

which attempts to minimize the distance between our student’s vectors and the
teacher vectors.

As this step relies purely on embedding space distillation, there is no need
to leverage retrieval datasets, since the relationship between queries and docu-
ments is not used during this stage. However, it has previously been highlighted
that having a variety of inputs corresponding to common retrieval uses [30], es-
pecially in terms of input lengths (e.g. longer documents and short queries), is
helpful to improve performance. We thus sample many documents from various
mixed sources and queries from large retrieval datasets, with a detailed data mix
provided in Appendix A.

We used StellaV5 1.5B as our teacher model, with an output dimension of
1024. We found that using higher teacher dimension embeddings resulted in
decreasing performance, likely due to the vast dimension difference between our
student models and the target sizes, while lower dimensions such as 768 resulted
in mildly diminished results. To ensure our models’ dimensions matched the
teacher ones for distillation, we employed a 2-layer feedforward projection with
a SiLU [7](a.k.a Swish [23]) activation.
5 https://github.com/SeanLee97/AnglE
6 https://github.com/NovaSearch-Team/RAG-Retrieval

https://github.com/SeanLee97/AnglE
https://github.com/NovaSearch-Team/RAG-Retrieval


Mxbai-edge-ColBERTv0 7

Table 4. Average NDCG@10 on NanoBEIR for dense Mxbai Edge variants.

Model Avg. NDCG@10

Mxbai Edge 17M (Dense, FT) 0.556
Mxbai Edge 17M (Dense, Distill) 0.567

Mxbai Edge 32M (Dense, FT) 0.576
Mxbai Edge 32M (Dense, Distill) 0.626

Table 4 shows the NanoBEIR NDCG@10 results between the post-finetuning
and post-distillation variants of both model sizes. It shows that, despite our
streamlined process, this step results in performance gains7, but unevenly dis-
tributed across model sizes. While the 32M variant heavily benefits from this
step, the gains on the 17M model are more modest. We theorise that this might
be due to the streamlined distillation loss we used struggling to bridge large
dimensionality gaps compared to the original, more complex Stella loss mix, but
do not explore this effect further.

3 ColBERT Training

Finally, we apply our final training stage for the ColBERT models. We run a
series of ablations in order to create a strong baseline with this model, which
will be able to support both real-world edge use cases and subsequent research
uses satisfyingly.

We detail our training setting in the subsequent sections about our ablation
work. For training data, we restrict ourselves to MSMARCO, so as to ensure that
better data does not obscure the impact of training modifications (further details
in Section 3.1), and use 16-way training tuples, where each query is associated
with a positive example and 15 negative examples, all with a teacher score.
We use a batch size of 128 and KL-Div loss with normalized scores [3], except
when otherwise specified. All experiments are performed using the PyLate [2]
framework.

3.1 Data

We experimented with various training datasets, comparing the MSMARCO [20]
RLHN [29] set scored with Qwen3-Reranker [39] as a teacher to the triplets used
by answerai-colbert-small [4] and GTE-ModernColBERT [1], with scores gener-
ated by BGE-Gemma2 Reranker8 [14] to score a small subset of MSMARCO
training tuples and comparing min-max normalized and unnormalized teacher
scores [3].

7 with the 32M variant reaching performance that is competitive with many state-of-
the-art small embedding models.

8 https://huggingface.co/BAAI/bge-reranker-v2-gemma

https://huggingface.co/BAAI/bge-reranker-v2-gemma


8 R. Takehi et al.

Table 5. Effect of teachers used for distillation.

Teacher NDCG@10
Qwen3-8B (no norm) 0.5991
Qwen3-8B (minmax norm) 0.5854
BGE-M3 0.6286

We present a comparison of these training methods in Table 5. Surprisingly,
whether normalized or unnormalized, Qwen3-Reranker is consistently outper-
formed as a teacher by the older BGE-Gemma2. Upon further analysis, it ap-
pears that on common retrieval benchmarks, the scores generated by Qwen3-
Reranker are extremely skewed towards the extremes, with very scores outside
of the [0.99,1] range for positives and [0, 0.01] range for negatives. We believe
that this might be indicative of overfitting from the reranker, resulting in poor
distributions to use for distillation. Our attempts at using both large and very
small temperatures did not significantly change performance.

3.2 Ablations

We performed various ablations in order to understand the impact of certain pa-
rameters on model performance. To avoid overfitting, hyperparemeter ablations
(optimizer, distillation impact, learning rate and projection dim) were evaluated
on 5 NanoBEIR subset, so as to provide a good performance indicator without
being exposed to the full BEIR sets. The selected subsets are high-quality search
dataset MSMARCO (in-domain), SciFact (OOD), FiQA (OOD), NQ (OOD),
and NFCorpus (OOD). Final ablations on projection layers and casing were
evaluated on all of NanoBEIR.

Optimizers We benchmarked both AdamW [18] and Muon [10] across a range of
learning rates with a fixed batch size. We present the results of these ablations
in Table 6. Our results indicate that even with limited experiments and the
relatively small batch size that is commonly employed to train late-interaction
models, Muon appears to be a strong optimizer for ColBERT model training.

Impact of Stella-style Distillation In Table 7, we show a comparison of
running trainings on the dense embedding result model resulting from our fine-
tuning stage vs the model resulting from our distillation stage. Our results
clearly show that Stella-style distillation improves performance of the result-
ing ColBERT model, even when projection heads are discarded to only retain
the backbone model.

Projection Dimension The projection dimension used by ColBERT models
is traditionally set to 128, after the one used by the original ColBERT and
ColBERTv2 [11,25] models, and this dimension has shown good performance in



Mxbai-edge-ColBERTv0 9

Table 6. Comparison of model performance across optimizers and learning rates.
NDCG@10 is the average NDCG@10 score across the 4 ablation datasets.

Optimizer NDCG@10

AdamW
1e-4 0.5911
5e-5 0.5780
8e-5 0.5923

Muon
1e-4 (AdamW 8e-5) 0.5718
3e-4 (AdamW 8e-5) 0.5604
5e-4 (AdamW 8e-5) 0.5862
1e-3 (AdamW 8e-5) 0.5985
3e-3 (AdamW 8e-5) 0.5748

Table 7. ColBERT performs better on a base embedding model trained on Stella-style
distillation.

Base Model Variant NDCG@10

32M model (fine-tuned only) 0.5771
32M model (with Stella-style distillation) 0.5911

both text and multimodal settings [8]. As of right now, the current state-of-the-
art for smaller ColBERT models uses a projection dimension of 96 [4]. In effect,
the final projection dimension is largely defined in an arbitrary way, despite
the large consequences it has in terms of both storage requirements and scoring
speed.

Table 8. Effect of projection dimension on NDCG@10 (Muon 1e-3, AdamW 8e-5) on
the 32m model, using 20% training data.

Projection Dimension NDCG@10
96 0.5991
64 0.5985
48 0.5967
32 0.5772
24 0.5423
16 0.5126

In Table 8, we present the results of ablating a large range of projection
dimensions, from 16 to 96. We show that lower dimensions hold up performance
surprisingly well. Indeed, the performance decrease on NanoBEIR is very mild



10 R. Takehi et al.

until a dimension of 48, but subsequently considerably degrades at projection
dimensions of 32 and below.

Projection Layers In a recent study, we demonstrated that the use of more
complex projection layers outperformed the single-layer linear projection that is
ubiquitous in ColBERT models [5]. As part of this work, we experiment with the
best variant proposed in our previous study, using a 2-layer feedforward network
with an upscaled intermediate dimension and a residual connection, and compare
it to a model trained with the “normal” ColBERT projection.

Table 9. Performance of different projection heads on the 17m model, under matched
training hyperparameters, on full data.

Projection NDCG@10
2-layer FFN 0.6405
Linear Projection 0.6286

We present the results of this comparison on the 17m parameter model vari-
ant in Table 9. As this experiment came later in our training process, results are
reported as full NanoBEIR NDCG@10 rather the previously defined ablation
sets. Our results that the use of better projection layers contributes positively to
performance. While we do not perform significance testing due to the low num-
ber of evaluated checkpoints, we note that we reproduced this effect across a
range of training seeds, with no single-layer linear projection checkpoint coming
within less than 1 NDCG@10 of the 2-layer projection checkpoints.

Casing Virtually all embedding models we consider "previous-generation" ei-
ther use bert-base-uncased [6] as their backbone, or models which were largely
inspired by it. These encoders are all case-insensitive, meaning that all input text
is lower-cased before being tokenized.

On the other hand, virtually all Large Language Models employ some form of
casing, which ModernBERT [33], and thus subsequently Ettin [35], also adopts.

The impact this tokenization change has, if any, has not yet been studied in
detail. We decided to conduct an ablation in this sense, for which we present the
results in Table 10.

Our results demonstrate an interesting phenomenon: while there appears to
be no significant difference at the 32M parameter scale, the results of the 17M
model variant are significantly improved by lower-casing. Across random seeds,
we also observed that lower-casing consistently reached stronger performance on
the 17M model, but no discernible trend emerged at the 32M scale.

As with other ablations, we do not further attempt to understand the un-
derlying mechanism, but theorise that the limited embedding dimensions and
parameter count of the 17M model means that it benefits disproportionately
from the learning simplification that lower-casing provides.



Mxbai-edge-ColBERTv0 11

Table 10. NanoBEIR NDCG@10 comparison with and without lower-casing as a pre-
processing step, with all other hyperparameters kept equal and training on the full
data.

Optimizer NDCG@10

32M
Lower-casing 0.6520
No lower-casing 0.6519

17M
Lower-casing 0.6405
No lower-casing 0.6317

4 Results

Table 11. BEIR benchmark results (NDCG@10). Columns show the BEIR average
and sampled tasks: MSMARCO, SciFact, Touche2020, FiQA, TREC-COVID, NQ, and
DBPedia. Results in bold indicate best result for the weight class. The best results for
size class are in bold. The complete table in Appendix B.

Model AVG MSMARCO SF Touche FiQA COVID NQ DBP
>100M parameters

GTE-ModernColBERT-v1 0.547 0.453 0.763 0.312 0.453 0.836 0.618 0.480
ColBERTv2 0.488 0.456 0.693 0.263 0.356 0.733 0.562 0.446

<35M parameters

mxbai-edge-colbert-v0-32m 0.521 0.450 0.740 0.313 0.390 0.775 0.600 0.455
answerai-colbert-small-v1 0.534 0.434 0.740 0.250 0.410 0.831 0.594 0.464
bge-small-en-v1.5 0.517 0.408 0.713 0.260 0.403 0.759 0.502 0.400
snowflake-s 0.520 0.402 0.722 0.235 0.407 0.801 0.509 0.410

<25M parameters

mxbai-edge-colbert-v0-17m 0.490 0.416 0.719 0.316 0.326 0.713 0.551 0.410
colbert-muvera-micro 0.394 0.364 0.662 0.251 0.254 0.561 0.386 0.332
all-MiniLM-L6-v2 0.419 0.365 0.645 0.169 0.369 0.472 0.439 0.323

In Table 11, we present the result of our model on a selected range of
BEIR [28] datasets and their average, while Table 12, we present the result
of our model on LongEmbed task [41].

On the BEIR datasets, we note that our models are overall strong perform-
ers. While outperformed on short-context average by the previous small-scale
state-of-the-art, answerai-colbert-small, they reach strong performance across



12 R. Takehi et al.

the board. Particularly noteworthy is that mxbai-edge-colbert-v0-17m, a 17 Mil-
lion parameter model, outperforms the still-widely-used ColBERTv2, despite
having less than 1/6th of the parameters and a projection dimension set to just
48, a third of ColBERTv2’s 128. They do so with remarkable efficiency, especially
as context length increases, thanks to their ModernBERT-based backbone.

Table 12. Detailed LongEmbed benchmark performance. Context length is set to 4k
and 32k context variants for models supporting it. Otherwise, it is set to the model’s
maximum sequence length (8k for granite-embeddings and 512 for others). Best re-
sults for size class are in bold, best overall results are underlined. Models with more
parameters than their size class but added for completeness are in italics.

Model AVG NarrQA QMSum Wiki SummScr. Needle Passkey
>100M parameters

GTE-ModernColBERT-v1 (32k) 0.898 0.780 0.737 0.999 0.953 0.950 0.970
GTE-ModernColBERT-v1 (4k) 0.809 0.530 0.528 0.931 0.947 0.950 0.970
granite-embedding-english-r2 9 0.656 0.479 0.416 0.859 0.937 0.430 0.818
ColBERTv2 0.428 0.287 0.254 0.648 0.686 0.330 0.365

<50M parameters

mxbai-edge-colbert-v0-32m (32k) 0.849 0.585 0.698 0.993 0.910 0.915 0.990
mxbai-edge-colbert-v0-32m (4k) 0.783 0.444 0.508 0.930 0.909 0.915 0.990
granite-embedding-small-english-r2 10 0.637 0.413 0.365 0.799 0.899 0.550 0.798
answerai-colbert-small-v1 0.441 0.266 0.272 0.645 0.735 0.338 0.388
bge-small-en-v1.5 0.312 0.220 0.208 0.430 0.532 0.263 0.218
snowflake-arctic-embed-s 0.356 0.177 0.230 0.411 0.643 0.283 0.390

<25M parameters

mxbai-edge-colbert-v0-17m (32k) 0.847 0.621 0.733 0.977 0.943 0.950 0.858
mxbai-edge-colbert-v0-17m (4k) 0.776 0.437 0.566 0.909 0.935 0.950 0.858
all-MiniLM-L6-v2 0.298 0.183 0.163 0.463 0.548 0.200 0.233
colbert-muvera-micro 0.405 0.230 0.244 0.566 0.689 0.318 0.385

On long-context evaluations, our models reach very strong performance, only
outperformed again by the larger GTE-ModernColBERT. We show that both
of our models are extremely strong performer, only outperformed by the larger
GTE-ModernColBERT. As expected, models based on more modern architec-
ture, capable of handling longer context lengths, are the only competitive mod-
els on this task, with previous methods unable to process longer documents
efficiently and resorting to truncation, thus greatly reducing their performance.

9 149M parameter model. Results are from the MTEB leaderboard.
10 49M parameter model. Results are from the MTEB leaderboard.



Mxbai-edge-ColBERTv0 13

Particularly notably, even our 17M parameter variant outperforms the cur-
rent <1B parameter single-vector retrieval state-of-the-art11 on LongEmbed
tasks, such as granite-embedding-r2, by almost 20NDCG@10 points. Note that
Needle and Passkey are computed on NDCG@1 and are calculated by taking the
average of all lengths.

Interestingly, we note, similarly to [1] that despite being based on a model
with a native 8,000 context window, mxbai-edge-colbert’s models are capable of
handling 32k sequence lengths and observe performance gains from it, despite
our retrieval training using documents truncated to 220 tokens.

Finally, we note that the low parameter count of our models, in combina-
tion with their highly-efficient architecture, make them particularly suitable for
reranking task. This is especially true for longer chunks, as there currently does
not exist any re-ranker able to reach similarly strong performance while running
with low latencies on CPU for long document reranking.

Table 13. Relative performance and efficiency comparisons of small ColBERT models
on NanoBEIR, with ColBERTv2 as a reference. CPU and GPU refer to runtimes as
the average of 10 runs on each hardware type. Mem. is RAM requirements, in MB,
for storing 10,000 300 token document representations in fp16. LoCo. stands for long-
context support. Dim. is the projection dimension of each model. Best values are in
bold, best values while outperforming ColBERTv2 on retrieval are underlined.

Model Params Dim. NDCG@10 LoCo GPU CPU Mem.

ColBERTv2 130M 128 0.6198 – 81s 1540s 732

answerai-colbert-small-v1 33M 96 0.6545 – 59s 621s 549
colbert-muvera-micro 4M 128 0.5599 – 45s 88s 732

mxbai-edge-colbert-v0-17m 17M 48 0.6405 ✓ 51s 487s 275
mxbai-edge-colbert-v0-32m 32M 64 0.6520 ✓ 55s 589s 366

Efficiency comparison with other small ColBERTs Table 13 shows the rel-
ative performance of our 17M parameter edge ColBERT against other commonly
used small ColBERTs, along with efficiency comparisons. For ease of rapid eval-
uation, we report overall NanoBEIR NDCG@10 scores, long-context support,
projection dimension (a very important factor for edge use cases), mean run-
time of 10 NanoBEIR evaluation runs on both GPU with a single RTX 4090
and CPU, representing the encoding of around 67,000 documents, as well as 650
queries and as many searches and scoring steps.

We also report the memory usage required to store the 16-bit vector represen-
tations of 10,000 300-tokens documents stored, a direct factor of the projection
dimension, to provide a brief overview of the suitability for various in-memory
encoding usages.
11 According to the MTEB Leaderboard as of October 2025



14 R. Takehi et al.

5 Conclusion

We introduce v0 of the Mxbai-edge-ColBERT model family. These models repre-
sent the first small ColBERT model to fully benefit from a modern architecture,
with long-context support and all the efficiency improvements introduced by the
ModernBERT [33] generation of encoder models.

Our intent with these models is two-fold: our main aim is for them to pro-
vide a suitable testbed for future experiments and distillation of our research
on larger-scale models, as well as to serve as a strong performance predictor
experiments, following scaling laws. Our second aim to support a large range of
on-device use-cases, be it local RAG projects or extremely efficient re-ranking
on both CPU and GPU.

Mxbai-edge-ColBERT-v0, at both model sizes, reach strong performance on
a variety of datasets. Notably, the 17M parameter variant outperforms Col-
BERTv2 with an order-of-magnitude fewer parameters, and with vector storage
and scoring-time compute requirements reduced by two thirds.

We fully intend to continue to upgrade these models with future developments
and are looking forward to seeing them used in the real-world.

References

1. Chaffin, A.: Gte-moderncolbert (2025), https://huggingface.co/lightonai/
GTE-ModernColBERT-v1

2. Chaffin, A., Sourty, R.: Pylate: Flexible training and retrieval for late interaction
models. arXiv preprint arXiv:2508.03555, to be published at CIKM 2025 (2025)

3. Clavié, B.: Jacolbertv2. 5: Optimising multi-vector retrievers to create state-of-the-
art japanese retrievers with constrained resources. Journal of Natural Language
Processing 32(1), 176–218 (2025)

4. Clavié, B.: Small but mighty: Introducing answerai-colbert-small (August 2024),
https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html

5. Clavié, B., Lee, S., Takehi, R., Shakir, A., Kato, M.P.: Simple projection variants
improve colbert performance (2025), https://arxiv.org/abs/2510.12327

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186 (2019)

7. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural networks 107, 3–11
(2018)

8. Faysse, M., Sibille, H., Wu, T., Omrani, B., Viaud, G., HUDELOT, C., Colombo,
P.: Colpali: Efficient document retrieval with vision language models. In: The
Thirteenth International Conference on Learning Representations (2025), https:
//openreview.net/forum?id=ogjBpZ8uSi

9. Gao, L., Zhang, Y., Han, J., Callan, J.: Scaling deep contrastive learning batch
size under memory limited setup. In: Proceedings of the 6th Workshop on Repre-
sentation Learning for NLP (2021)

https://huggingface.co/lightonai/GTE-ModernColBERT-v1
https://huggingface.co/lightonai/GTE-ModernColBERT-v1
https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html
https://arxiv.org/abs/2510.12327
https://openreview.net/forum?id=ogjBpZ8uSi
https://openreview.net/forum?id=ogjBpZ8uSi


Mxbai-edge-ColBERTv0 15

10. Jordan, K., Jin, Y., Boza, V., You, J., Cesista, F., Newhouse, L., Bernstein,
J.: Muon: An optimizer for hidden layers in neural networks (2024), https:
//kellerjordan.github.io/posts/muon/

11. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-
textualized late interaction over bert. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval.
pp. 39–48 (2020)

12. Lee, S., Shakir, A., Koenig, D., Lipp, J.: Open source strikes bread-new fluffy
embeddings model (2024). URL https://www. mixedbread. ai/blog/mxbai-embed-
large-v1 (2024)

13. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems
33, 9459–9474 (2020)

14. Li, C., Liu, Z., Xiao, S., Shao, Y.: Making large language models a better foundation
for dense retrieval (2023)

15. Li, X., Li, J.: AnglE-optimized text embeddings. arXiv preprint cs.CL
arXiv:2309.12871 (2023)

16. Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P., Zhang, M.: Towards general text
embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281
(2023)

17. Liu, F., Enevoldsen, K.C., Solomatin, R., Samoed, T., Chung, I., Aarsen, T., Fődi,
Z.: Introducing rteb: A new standard for retrieval evaluation. Hugging Face Blog
(Oct 2025), https://huggingface.co/blog/rteb

18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

19. Merrick, L., Xu, D., Nuti, G., Campos, D.: Arctic-embed: Scalable, efficient, and
accurate text embedding models. arXiv preprint arXiv:2405.05374 (2024)

20. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng,
L.: Ms marco: A human-generated machine reading comprehension dataset (2016)

21. Nussbaum, Z., Morris, J.X., Duderstadt, B., Mulyar, A.: Nomic embed: Training
a reproducible long context text embedder (2024)

22. Penedo, G., Kydlíček, H., Lozhkov, A., Mitchell, M., Raffel, C.A., Von Werra, L.,
Wolf, T., et al.: The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems 37, 30811–30849 (2024)

23. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

24. Santhanam, K., Khattab, O., Potts, C., Zaharia, M.: Plaid: an efficient engine for
late interaction retrieval. In: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. pp. 1747–1756 (2022)

25. Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., Zaharia, M.: Colbertv2:
Effective and efficient retrieval via lightweight late interaction. In: Proceedings
of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. pp. 3715–3734 (2022)

26. de Souza P. Moreira, G., Osmulski, R., Xu, M., Ak, R., Schifferer, B., Oldridge,
E.: Nv-retriever: Improving text embedding models with effective hard-negative
mining (2025), https://arxiv.org/abs/2407.15831

27. Teiletche, P., Macé, Q., Conti, M., Loison, A., Viaud, G., Colombo, P., Faysse, M.:
Modernvbert: Towards smaller visual document retrievers (2025), https://arxiv.
org/abs/2510.01149

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://huggingface.co/blog/rteb
https://arxiv.org/abs/2407.15831
https://arxiv.org/abs/2510.01149
https://arxiv.org/abs/2510.01149


16 R. Takehi et al.

28. Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., Gurevych, I.: Beir: A heteroge-
nous benchmark for zero-shot evaluation of information retrieval models. arXiv
preprint arXiv:2104.08663 (2021)

29. Thakur, N., Zhang, C., Ma, X., Lin, J.: Fixing data that hurts performance:
Cascading llms to relabel hard negatives for robust information retrieval (2025),
https://arxiv.org/abs/2505.16967

30. Vujanic, R., Rueckstiess, T.: Leaf: Knowledge distillation of text embedding models
with teacher-aligned representations (2025), https://arxiv.org/abs/2509.12539

31. Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D., Majumder, R., Wei,
F.: Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533 (2022)

32. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems 33, 5776–5788 (2020)

33. Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallström, O., Taghadouini,
S., Gallagher, A., Biswas, R., Ladhak, F., Aarsen, T., Adams, G.T., Howard,
J., Poli, I.: Smarter, better, faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning and inference. In: Che, W.,
Nabende, J., Shutova, E., Pilehvar, M.T. (eds.) Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). pp. 2526–2547. Association for Computational Linguistics, Vienna, Aus-
tria (Jul 2025). https://doi.org/10.18653/v1/2025.acl-long.127, https://
aclanthology.org/2025.acl-long.127/

34. Weller, O., Boratko, M., Naim, I., Lee, J.: On the theoretical limitations of
embedding-based retrieval (2025), https://arxiv.org/abs/2508.21038

35. Weller, O., Ricci, K., Marone, M., Chaffin, A., Lawrie, D., Durme, B.V.: Seq vs
seq: An open suite of paired encoders and decoders (2025), https://arxiv.org/
abs/2507.11412

36. Yates, A., Nogueira, R., Lin, J.: Pretrained transformers for text ranking: Bert and
beyond. In: Proceedings of the 14th ACM International Conference on web search
and data mining. pp. 1154–1156 (2021)

37. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval
model training with hard negatives. In: Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval. pp. 1503–
1512 (2021)

38. Zhang, D., Li, J., Zeng, Z., Wang, F.: Jasper and stella: distillation of sota embed-
ding models (2025), https://arxiv.org/abs/2412.19048

39. Zhang, Y., Li, M., Long, D., Zhang, X., Lin, H., Yang, B., Xie, P., Yang, A., Liu,
D., Lin, J., Huang, F., Zhou, J.: Qwen3 embedding: Advancing text embedding
and reranking through foundation models (2025), https://arxiv.org/abs/2506.
05176

40. Zhou, F., Wang, Z., Liu, Q., Li, J., Liu, P.: Programming every example: Lifting
pre-training data quality like experts at scale. arXiv preprint arXiv:2409.17115
(2024)

41. Zhu, D., Wang, L., Yang, N., Song, Y., Wu, W., Wei, F., Li, S.: Longembed:
Extending embedding models for long context retrieval (2024), https://arxiv.
org/abs/2404.12096

https://arxiv.org/abs/2505.16967
https://arxiv.org/abs/2509.12539
https://doi.org/10.18653/v1/2025.acl-long.127
https://doi.org/10.18653/v1/2025.acl-long.127
https://aclanthology.org/2025.acl-long.127/
https://aclanthology.org/2025.acl-long.127/
https://arxiv.org/abs/2508.21038
https://arxiv.org/abs/2507.11412
https://arxiv.org/abs/2507.11412
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2506.05176
https://arxiv.org/abs/2506.05176
https://arxiv.org/abs/2404.12096
https://arxiv.org/abs/2404.12096


Mxbai-edge-ColBERTv0 17

A Distillation Data

The data mix for the distillation stage is provided in Tables 14 and 15.

Table 14. Queries used for distillation

Dataset Size (rows)
msmarco 510k
amazon_qa 475k
nq 175k
triviaqa 70k
pubmed 67k
arxiv 50k
cornstk 50k
lotte 25k
medqa 13k
mldr 12.2k
Total 1.45M

Table 15. Passages used for distillation

Dataset Size (rows)
DCLM-Pro 1.59M
english_words 742k
fineweb 665k
dclm_sent 400k
ccnews 370k
stack 185k
ettin_tokens 50k
Total 4.00M

DCLM-Pro [40] and FineWeb [22] are full documents randomly from their
respective datasets, while dclm_sent is comprised of individual DCLM-Pro doc-
uments broken down into individual sentences, to create more varied small-length
inputs, again following Stella [38]. ettin_tokens and english_words were added
during the course of this study following the release of LEAF [30], which used a
similar method to improve trianing. ettin_tokens is a dataset comprised of very
short input, where each document is a single token from our model’s tokenizer,
while english_words is a large collection of English words along with a definition
generated by Gemini 2.0 Flash.

B Full BEIR Results

We show the full BEIR results in Tables 16 and 17.



18 R. Takehi et al.

Table 16. BEIR benchmark (Part A): AVG and (Touche2020, NQ, MSMARCO, Sci-
Fact, FiQA2018, NFCorpus, ArguAna). Scores are NDCG@10.

Model AVG Touche2020 NQ MSMARCO SciFact FiQA2018 NFCorpus ArguAna
>100M parameters
GTE-ModernColBERT-v1 0.547 0.312 0.618 0.453 0.763 0.453 0.379 0.485
colbertv2 0.488 0.263 0.562 0.456 0.693 0.356 0.338 0.463
<35M parameters
mxbai-edge-colbert-v0-32m 0.521 0.313 0.600 0.450 0.740 0.390 0.362 0.454
answerai-colbert-small-v1 0.533 0.250 0.594 0.434 0.740 0.410 0.369 0.468
bge-small-en-v1.5 0.517 0.260 0.502 0.408 0.713 0.403 0.349 0.331
snowflake-s 0.520 0.235 0.509 0.402 0.722 0.407 0.324 0.339
<25M parameters
mxbai-edge-colbert-v0-17m 0.490 0.316 0.551 0.416 0.719 0.326 0.352 0.464
colbert-muvera-micro 0.394 0.251 0.386 0.364 0.662 0.254 0.321 0.303
all-MiniLM-L6-v2 0.419 0.169 0.439 0.365 0.645 0.369 0.314 0.331

Table 17. BEIR benchmark (Part B): Rest of the tasks (QuoraRetrieval, SCIDOCS,
TRECCOVID, ClimateFEVER, HotpotQA, DBPedia, CQADupstack, FEVER).
Scores are NDCG@10.

Model QuoraRetrieval SCIDOCS TRECCOVID ClimateFEVER HotpotQA DBPedia CQADupstack FEVER
>100M parameters
GTE-ModernColBERT-v1 0.866 0.191 0.836 0.306 0.773 0.480 0.410 0.874
colbertv2 0.852 0.154 0.733 0.176 0.667 0.446 0.378 0.785
<35M parameters
mxbai-edge-colbert-v0-32m 0.863 0.170 0.775 0.290 0.734 0.455 0.388 0.826
answerai-colbert-small-v1 0.879 0.187 0.831 0.328 0.769 0.464 0.394 0.887
bge-small-en-v1.5 0.887 0.198 0.759 0.253 0.699 0.400 0.391 0.866
snowflake-s 0.884 0.218 0.801 0.352 0.665 0.410 0.397 0.871
<25M parameters
mxbai-edge-colbert-v0-17m 0.839 0.169 0.713 0.224 0.713 0.410 0.356 0.784
colbert-muvera-micro 0.764 0.123 0.561 0.115 0.528 0.332 0.313 0.637
all-MiniLM-L6-v2 0.876 0.217 0.472 0.203 0.465 0.323 0.412 0.519


	Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report

